## Types in MathNet.Numerics.Interpolation

Namespace MathNet.Numerics.Interpolation

Interfaces IInterpolation

Supports both differentiation and integration.

### Public Constructors

#### QuadraticSpline(Double[] x, Double[] c0, Double[] c1, Double[] c2)

##### Parameters
###### `Double[]` x

sample points (N+1), sorted ascending

###### `Double[]` c0

Zero order spline coefficients (N)

###### `Double[]` c1

First order spline coefficients (N)

###### `Double[]` c2

second order spline coefficients (N)

### Public Methods

#### doubleDifferentiate(double t)

Differentiate at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated first derivative at point t.

#### doubleDifferentiate2(double t)

Differentiate twice at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated second derivative at point t.

#### doubleIntegrate(double t)

Indefinite integral at point t.
##### Parameters
###### `double` t

Point t to integrate at.

#### doubleIntegrate(double a, double b)

Definite integral between points a and b.
##### Parameters
###### `double` a

Left bound of the integration interval [a,b].

###### `double` b

Right bound of the integration interval [a,b].

#### doubleInterpolate(double t)

Interpolate at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated value x(t).