## Types in MathNet.Numerics.Interpolation

Type NevillePolynomialInterpolation

Namespace MathNet.Numerics.Interpolation

Interfaces IInterpolation

Lagrange Polynomial Interpolation using Neville's Algorithm.

This algorithm supports differentiation, but doesn't support integration.

When working with equidistant or Chebyshev sample points it is recommended to use the barycentric algorithms specialized for these cases instead of this arbitrary Neville algorithm.

### Public Constructors

#### NevillePolynomialInterpolation(Double[] x, Double[] y)

##### Parameters
###### `Double[]` x

Sample Points t, sorted ascendingly.

###### `Double[]` y

Sample Values x(t), sorted ascendingly by x.

### Public Static Functions

#### NevillePolynomialInterpolationInterpolate(IEnumerable<double> x, IEnumerable<double> y)

Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs.

#### NevillePolynomialInterpolationInterpolateInplace(Double[] x, Double[] y)

Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs. WARNING: Works in-place and can thus causes the data array to be reordered.

#### NevillePolynomialInterpolationInterpolateSorted(Double[] x, Double[] y)

Create a Neville polynomial interpolation from a set of (x,y) value pairs, sorted ascendingly by x.

### Public Methods

#### doubleDifferentiate(double t)

Differentiate at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated first derivative at point t.

#### doubleDifferentiate2(double t)

Differentiate twice at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated second derivative at point t.

#### doubleInterpolate(double t)

Interpolate at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated value x(t).