Namespaces

Types in MathNet.Numerics.Interpolation

Type NevillePolynomialInterpolation

Namespace MathNet.Numerics.Interpolation

Interfaces IInterpolation

Lagrange Polynomial Interpolation using Neville's Algorithm.

This algorithm supports differentiation, but doesn't support integration.

When working with equidistant or Chebyshev sample points it is recommended to use the barycentric algorithms specialized for these cases instead of this arbitrary Neville algorithm.

Constructors

Static Functions

Methods

Public Constructors

NevillePolynomialInterpolation(Double[] x, Double[] y)

Parameters
Double[] x

Sample Points t, sorted ascendingly.

Double[] y

Sample Values x(t), sorted ascendingly by x.

Public Static Functions

NevillePolynomialInterpolation Interpolate(IEnumerable<double> x, IEnumerable<double> y)

Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs.

NevillePolynomialInterpolation InterpolateInplace(Double[] x, Double[] y)

Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs. WARNING: Works in-place and can thus causes the data array to be reordered.

NevillePolynomialInterpolation InterpolateSorted(Double[] x, Double[] y)

Create a Neville polynomial interpolation from a set of (x,y) value pairs, sorted ascendingly by x.

Public Methods

double Differentiate(double t)

Differentiate at point t.
Parameters
double t

Point t to interpolate at.

Return
double

Interpolated first derivative at point t.

double Differentiate2(double t)

Differentiate twice at point t.
Parameters
double t

Point t to interpolate at.

Return
double

Interpolated second derivative at point t.

bool Equals(object obj)

int GetHashCode()

Type GetType()

double Interpolate(double t)

Interpolate at point t.
Parameters
double t

Point t to interpolate at.

Return
double

Interpolated value x(t).

string ToString()