## Types in MathNet.Numerics.Interpolation

Type Barycentric

Namespace MathNet.Numerics.Interpolation

Interfaces IInterpolation

Barycentric Interpolation Algorithm.
Supports neither differentiation nor integration.

### Public Constructors

#### Barycentric(Double[] x, Double[] y, Double[] w)

##### Parameters
###### `Double[]` x

Sample points (N), sorted ascendingly.

###### `Double[]` y

Sample values (N), sorted ascendingly by x.

###### `Double[]` w

Barycentric weights (N), sorted ascendingly by x.

### Public Static Functions

#### BarycentricInterpolatePolynomialEquidistant(IEnumerable<double> x, IEnumerable<double> y)

Create a barycentric polynomial interpolation from an unsorted set of (x,y) value pairs with equidistant x.

#### BarycentricInterpolatePolynomialEquidistant(double leftBound, double rightBound, IEnumerable<double> y)

Create a barycentric polynomial interpolation from a set of values related to linearly/equidistant spaced points within an interval.

#### BarycentricInterpolatePolynomialEquidistantInplace(Double[] x, Double[] y)

Create a barycentric polynomial interpolation from an unordered set of (x,y) value pairs with equidistant x. WARNING: Works in-place and can thus causes the data array to be reordered.

#### BarycentricInterpolatePolynomialEquidistantSorted(Double[] x, Double[] y)

Create a barycentric polynomial interpolation from a set of (x,y) value pairs with equidistant x, sorted ascendingly by x.

#### BarycentricInterpolateRationalFloaterHormann(IEnumerable<double> x, IEnumerable<double> y, int order)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
##### Parameters
###### `IEnumerable<double>` x

Sample points (N), no sorting assumed.

###### `IEnumerable<double>` y

Sample values (N).

###### `int` order

Order of the interpolation scheme, 0 <= order <= N. In most cases a value between 3 and 8 gives good results.

#### BarycentricInterpolateRationalFloaterHormann(IEnumerable<double> x, IEnumerable<double> y)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
##### Parameters
###### `IEnumerable<double>` x

Sample points (N), no sorting assumed.

###### `IEnumerable<double>` y

Sample values (N).

#### BarycentricInterpolateRationalFloaterHormannInplace(Double[] x, Double[] y, int order)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm. WARNING: Works in-place and can thus causes the data array to be reordered.
##### Parameters
###### `Double[]` x

Sample points (N), no sorting assumed.

###### `Double[]` y

Sample values (N).

###### `int` order

Order of the interpolation scheme, 0 <= order <= N. In most cases a value between 3 and 8 gives good results.

#### BarycentricInterpolateRationalFloaterHormannInplace(Double[] x, Double[] y)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm. WARNING: Works in-place and can thus causes the data array to be reordered.
##### Parameters
###### `Double[]` x

Sample points (N), no sorting assumed.

###### `Double[]` y

Sample values (N).

#### BarycentricInterpolateRationalFloaterHormannSorted(Double[] x, Double[] y, int order)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm. The values are assumed to be sorted ascendingly by x.
##### Parameters
###### `Double[]` x

Sample points (N), sorted ascendingly.

###### `Double[]` y

Sample values (N), sorted ascendingly by x.

###### `int` order

Order of the interpolation scheme, 0 <= order <= N. In most cases a value between 3 and 8 gives good results.

#### BarycentricInterpolateRationalFloaterHormannSorted(Double[] x, Double[] y)

Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm. The values are assumed to be sorted ascendingly by x.
##### Parameters
###### `Double[]` x

Sample points (N), sorted ascendingly.

###### `Double[]` y

Sample values (N), sorted ascendingly by x.

### Public Methods

#### doubleInterpolate(double t)

Interpolate at point t.
##### Parameters
###### `double` t

Point t to interpolate at.

##### Return
###### `double`

Interpolated value x(t).