Parameters
Double[]
x
Data array to calculate auto correlation for.
Return
Double[]
An array with the ACF as a function of the lags k.
Type Correlation
Namespace MathNet.Numerics.Statistics
Double[]
xData array to calculate auto correlation for.
Double[]
An array with the ACF as a function of the lags k.
Double[]
xThe data array to calculate auto correlation for.
int
kMaxMax lag to calculate ACF for must be positive and smaller than x.Length.
int
kMinMin lag to calculate ACF for (0 = no shift with acf=1) must be zero or positive and smaller than x.Length.
Double[]
An array with the ACF as a function of the lags k.
Double[]
xThe data array to calculate auto correlation for.
Int32[]
kArray with lags to calculate ACF for.
Double[]
An array with the ACF as a function of the lags k.
IEnumerable<double>
dataASample data A.
IEnumerable<double>
dataBSample data B.
double
The Pearson product-moment correlation coefficient.
IEnumerable<Double[]>
vectorsEnumerable of sample data vectors.
IEnumerable<double>
dataASample data series A.
IEnumerable<double>
dataBSample data series B.
double
The Spearman ranked correlation coefficient.
IEnumerable<Double[]>
vectorsEnumerable of sample data vectors.
IEnumerable<double>
dataASample data A.
IEnumerable<double>
dataBSample data B.
IEnumerable<double>
weightsCorresponding weights of data.
double
The Weighted Pearson product-moment correlation coefficient.