## Types in MathNet.Numerics.RootFinding

Type Bisection

Namespace MathNet.Numerics.RootFinding

Bisection root-finding algorithm.

### Public Static Functions

#### doubleFindRoot(Func<double, double> f, double lowerBound, double upperBound, double accuracy, int maxIterations)

Find a solution of the equation f(x)=0.
##### Parameters
###### `Func<double, double>` f

The function to find roots from.

###### `double` lowerBound

The low value of the range where the root is supposed to be.

###### `double` upperBound

The high value of the range where the root is supposed to be.

###### `double` accuracy

Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.

###### `int` maxIterations

Maximum number of iterations. Default 100.

##### Return
###### `double`

Returns the root with the specified accuracy.

#### doubleFindRootExpand(Func<double, double> f, double guessLowerBound, double guessUpperBound, double accuracy, int maxIterations, double expandFactor, int maxExpandIteratons)

Find a solution of the equation f(x)=0.
##### Parameters
###### `Func<double, double>` f

The function to find roots from.

###### `double` guessLowerBound

Guess for the low value of the range where the root is supposed to be. Will be expanded if needed.

###### `double` guessUpperBound

Guess for the high value of the range where the root is supposed to be. Will be expanded if needed.

###### `double` accuracy

Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.

###### `int` maxIterations

Maximum number of iterations. Default 100.

###### `double` expandFactor

Factor at which to expand the bounds, if needed. Default 1.6.

###### `int` maxExpandIteratons

Maximum number of expand iterations. Default 100.

##### Return
###### `double`

Returns the root with the specified accuracy.