## Types in MathNet.Numerics.Differentiation

Type NumericalHessian

Namespace MathNet.Numerics.Differentiation

Class for evaluating the Hessian of a smooth continuously differentiable function using finite differences. By default, a central 3-point method is used.

### Public Constructors

#### NumericalHessian()

Creates a numerical Hessian object with a three point central difference method.

#### NumericalHessian(int points, int center)

Creates a numerical Hessian with a specified differentiation scheme.
##### Parameters
###### `int` points

Number of points for Hessian evaluation.

###### `int` center

Center point for differentiation.

### Public Methods

#### Double[]Evaluate(Func<double, double> f, double x)

Evaluates the Hessian of the scalar univariate function f at points x.
##### Parameters
###### `Func<double, double>` f

Scalar univariate function handle.

###### `double` x

Point at which to evaluate Hessian.

Hessian tensor.

#### Double[,]Evaluate(Func<Double[], double> f, Double[] x)

Evaluates the Hessian of a multivariate function f at points x.
This method of computing the Hessian is only valid for Lipschitz continuous functions. The function mirrors the Hessian along the diagonal since d2f/dxdy = d2f/dydx for continuously differentiable functions.
##### Parameters
###### `Func<Double[], double>` f

Multivariate function handle.>

###### `Double[]` x

Points at which to evaluate Hessian.>

Hessian tensor.

#### voidResetFunctionEvaluations()

Resets the function evaluation counter for the Hessian.

### Public Properties

#### intFunctionEvaluations get;

Number of function evaluations.