Parameters
Double[] x
Data array to calculate auto correlation for.
Return
Double[]
An array with the ACF as a function of the lags k.
Type Correlation
Namespace MathNet.Numerics.Statistics
Double[] xData array to calculate auto correlation for.
Double[]An array with the ACF as a function of the lags k.
Double[] xThe data array to calculate auto correlation for.
int kMaxMax lag to calculate ACF for must be positive and smaller than x.Length.
int kMinMin lag to calculate ACF for (0 = no shift with acf=1) must be zero or positive and smaller than x.Length.
Double[]An array with the ACF as a function of the lags k.
Double[] xThe data array to calculate auto correlation for.
Int32[] kArray with lags to calculate ACF for.
Double[]An array with the ACF as a function of the lags k.
IEnumerable<double> dataASample data A.
IEnumerable<double> dataBSample data B.
doubleThe Pearson product-moment correlation coefficient.
IEnumerable<Double[]> vectorsEnumerable of sample data vectors.
IEnumerable<double> dataASample data series A.
IEnumerable<double> dataBSample data series B.
doubleThe Spearman ranked correlation coefficient.
IEnumerable<Double[]> vectorsEnumerable of sample data vectors.
IEnumerable<double> dataASample data A.
IEnumerable<double> dataBSample data B.
IEnumerable<double> weightsCorresponding weights of data.
doubleThe Weighted Pearson product-moment correlation coefficient.